FFTs on BG/L Machines

Vienna University of Technology
Institute for Applied Mathematics
and Numerical Analysis

SFB AURORA

Franz Franchetti

Topics

® Self-adapting DSP software

e State of the art DSP software
e SPIRAL
o FFTW

e Why Is adaptivity needed?

® How to adapt FFTs to BG/L automatically?
e Utilizing Hummer?
e Utilizing the communication network

8/14/2002 Lake Tahoe, NV

BG/L Hardware
Characteristics

® CPU extensions :
e Hummer? two-way SIMD

€ Two-processor nodes:

e Computation processor
e Communication processor

® Communication Network:
e 3D torus
e Fill along lines

8/14/2002 Lake Tahoe, NV

FFT Algorithms:
Theory vs. Implementation

© Discrete Fourier ® Different algorithm families

_ e Cooley-Tukey
transform: e Good-Thomas

O(n-) operations o Rader

® Fast Fourier * Bluestein

transform: | of possible
algorithms

O :) ® Algorithms mainly differ in
operations memory access patterns

=
Uy

8/14/2002 Lake Tahoe, NV

C_U
| -
=1
n
!
~~
-
@)
()
o
o)
(@)
(D)
~~
~~
o
e
)
-

comes back
platform-adapted -
implementation 3
8/14/2002 Lake Tahoe,

SIMD Short Vector
Extensions

(2-way)
vector length =2

= Extension to instruction set architecture

= Available on most current architectures
(SSE/SSEZ2 on Intel, AltiVec on Motorola G4,
3DNow! On AMD,) H x B

» Originally for multimedia (like MMX for integers)

» Requires fine grain parallelism H + N

= SIMD instructions are architecture specific

= No common API (usually assembly hand coding)
* Performance to memory access

= Automatic vectorization (by compilers)

8/14/2002 Lake Tahoe, NV

Vectorization in SPIRAL

(Franz Franchetti and Markus Puschel)

Naturally vectorizable construct - ,. —H
B = -
X y

AA |,

vector length
(Current) generic construct completely vectorizable:
P, Q permutations

£ .
O RDI (A JAN IU)E|Q| D.,E diagonals
=1

A arbitrary formulas

? SIMD vector length

Vectorization in two steps:

using manipulation rules
(vector code + C code)

8/14/2002 Lake Tahoe, NV Page 7

FFTW - The Fastest Fourier Transform
INn the West

(Matteo Frigo and Steven Johnson)

& Adaptive Library for FFTs

e Various basic routines
combined to compute the whole transform

e Combination determined at runtime
by dynamic programming
e Basic routines generated automatically

& Main Components & Features
e Codelets e 1D and MD transforms

e Planner e Arbitrary vector lengths and
e Executor strides
[

Generator Serial and parallel
Implementations

http://www fftw org

8/14/2002 Lake Tahoe, NV

Automatic Vectorization in FFTW
(Stefan Kral)

& 2-way vectorizer for straight line code
e Rule based

& Special purpose assembly backend
e Register allocation
e Index computation

® Integrated into the FFTW codelet generator

% Available to download for
e AMD K6-2

e AMD K7
e Intel Pentium 4

http://ww.fftw org/~skral

8/14/2002 Lake Tahoe, NV

Performance Study:

DCT, type IV, size 16

%)
s,
>
=
=
[S)
L
.
o
S
@
le!
=
=
=

400 500 600
Formula Runtime (in nanoseconds)

* All automatically implemented

Best formula e Large spread in runtimes, even for modest size
* Not due to arithmetic cost
* Best formula is platform-dependent

8/14/2002 Lake Tahoe, NV

Performance Study: FFT
(1998)

Vector Lengths
25 210 215
NAG/c60f cf 11.6 6.0 3.3 2.6
IMSL/df f t cf 2.0 1.7 2.7 3.9
Numerical Recipies/f our 1 2.6 2.1 2.2 3.9
FFTPACK/cfftf 1.4 1.0 2.1 4.0
Green 1.6 1.1 1.0 —
FFTW 1.0 1.1 1.1 1.0

FFT Program

Slow-down factors

One processor of an SGI Power Challenge XL

8/14/2002 Lake Tahoe, NV

SIMD Vectorization: FFTW

AMD AthlonXP 1800+ (1533 MHz), Single precision,
Intel C++ Compiler 5.0, gcc 2.96 and g77 2.96

N
a
o]
o

——nf ftw2-si nd/ sse
nf ftw2

= |[ntel MKL 5.1

—— K7/FFTWGEL 1.2

[y
a
Q
(e}

z
g
Z
o
~
=
QL
Q.
kS
=

[y
o]
Q
(e}

8/14/2002 Lake Tahoe, NV

SIMD Vectorization: SPIRAL

Intel Pentium 4 (2530 MHz), Single precision, Intel C++ Compiler 6.0

-@— Spiral SSE

—— Intel MKL interl.
FFTW 2.1.3

—— Spiral C and F95

—— Spiral F95 vect

—=— SIMD-FFT

z
g
pd
Lo
~~
=
L
Q.
IS
O

8/14/2002 Lake Tahoe, NV

Communication

15800
1600
1400
1200
1 000 Performance
200 distribution
BOO
400
200

,-TI'I

* Problem: Find optimal communication
Best data flow network for FFTs
» Evaluate given networks w.r.t data flows
that occur in FFTs

8/14/2002 Lake Tahoe, NV

Self-adapting FFTs for BG/L

Algorithm decomposed into
® Adaptive communication layer

e Find optimal communication pattern
on BG/L for given FFT problem and nodes

® Adaptive computation layer

e Find optimal computing kernels
w.r.t. communication pattern

e utilize Hummer?

FFT kernels generated

8/14/2002 Lake Tahoe, NV

Dimensionless FFT

(Jeremy Johnson et al.)

€ DFT of Abelian groups

e Unifies 1D and MD DFTs, Cooley-Tukey, Good-
Thomas, Vector Radix FFT,...

® Automatic optimization of parallel FFT algorithms

e Data flow description of FFTs
based on permutations

e Adaptation of parallel FFT algorithms to architecture

® Find optimal data flow by
e Simulation
e Symbolic analysis

8/14/2002 Lake Tahoe, NV

Overlapping Algorithm

(Herbert Karner)

® Parallel 1D FFT algorithm
® Communication and computation overlapped
® Based on 2-level six-step recursion

® Utilizes any local FFT kernel
® Parallel 1D kernel for MD FFTs

8/14/2002 Lake Tahoe, NV

Reduced Transform
Algorithm

(Tolimieri et al.)

=
L

Multidimensional algorithm for
non-powers of 2

® 3 phases
e Overlapped download + summation

e Local FFTs (No communication!)

e Upload
® Lower count of 1D FFTs
® Based on multiplicative structure of index

sets

8/14/2002 Lake Tahoe, NV

Approximative FFT

(Alan Edelman)

® SVD based

e Only significant singular
values used

e Involves special matrix-vector products
® Saves communication

® Increases arithmetic complexity
e Big DFT ? smaller matrix-vector products

» Decreases accuracy

8/14/2002 Lake Tahoe, NV

FFTs for BG/L

® Single processor efforts

e SIMD vectorization
e Automatic 2-way vectorization
e Portabel n-way vectorization

e FMA optimization

® Parallel machine efforts
e Dimensionless FFT
e Overlapping
e Adaptive communication
e Reduced Transform Algorithm

8/14/2002 Lake Tahoe, NV

Conclusion

FFT algorithms for BG/L

e Standard algorithms
e \ectorization
e Parallelization

® Related results prove performance

8/14/2002 Lake Tahoe, NV

